California Hydrogen Highway Network

Hydrogen Infrastructure May 2010

California Air Resources Board

Hydrogen Infrastructure ZEV/Customer Driven

- ZEV Regulation
- Blueprint Plan
- Vehicle requirements
- Cluster development & Demographics
- Vehicle rollout/survey results

ARB/CEC Hydrogen FCV Statewide Survey Results

	Thru 2012	Thru 2014	2015 – 2017	
Passenger Vehicles	400+	1,800+	40-50,000	
Fuel cell Buses	15+	20-60	60-150	IFORNIA

2005 California Hydrogen Blueprint Plan Findings and Recommendations

- Develop station Networks in phases
 - 50 stations by 2010
 - Begin networks in major metropolitian areas
- Funding
 - \$6.5m annually for 5 years (stations)
 - \$4.2m annually for 5 years (vehicle incentives)
- Environmental Goals
 - 30% reduction in GHG relative to conv vehicles
 - Utilize 33% renewable resources in production of H2
 - No increase in toxics and smog forming pollutants
- Implementation
 - State establish policies to create H2 infrastructure
 - Cal/EPA lead outreach for CaH2 Network

California Hydrogen Infrastructure Funding History

- June 2008 = \$8.1 million
 - OCSD Air Products, AC Transit, CSULA
- March 2009 = \$6.8 million
 - Mebtahi Chevron, SFO, Shell Hydrogen, UCLA
- May 2010 = \$4.4 million (CEC/ARB)
 - O&M for City of Burbank, Oakland Transit
 Station
- September 2010 = \$19 million (AB-118)
- Spring 2011 = \$14 million (AB-118)

Hydrogen Station Equipment Costs – Different Configurations

Technology	Kg/day	EQ cost	5
Gaseous Delivery	100 - 200	\$200 - 500k	No.
Liquid delivery	100 – 200+	\$1.2 – 1.5M	
Pipeline	100 - 200+	\$800k	
Onsite Electrolyser	100	\$1.2M	ORNIA
Onsite SMR	100+	\$2 – 3M	

Northern California Region Greater SF Bay Area Cluster

- SF Peninsula San Francisco International Airport
 - LD/Shuttle bus station
 - Delivered Liquid Hydrogen & Hythane
 - Status working on Linde/SFO lease agreements
 - Expected opening 2Q 2011
- East Bay Area AC Transit District Oakland & Emeryville stations
 - Integrated LDFCV/HD FCB station
 - LDV 100% renewable powered electrolyzer
 - Status undergoing permitting process
 - Construction 3rd Q 2010
 - Expected Opening 4Q 2010

Southern California Region Greater Los Angeles Area

- Santa Monica/West LA Cluster
 - Shell Santa Monica
 - Electrolyser, 350bar, canopy
 - University of California Los Angeles
 - Steam Methane Reformer, LDFCV station,
- East Los Angeles/South Pasadena
 - California State University Los Angeles
 - 100% renewable Electrolysis, LDV station,
- San Fernando Valley
 - City of Burbank City yard
 - Steam Methane Reformer/Tube trailer,LDFCV/Transit station

Southern California Region Greater Los Angeles Area

- South Torrance Cluster
 - Torrance Shell
 - pipeline
 - Harbor City Chevron Station
 - High Pressure Delivered gaseous, awaiting final permitting
- Newport Beach Cluster
 - Shell Fashion Island full retail
 - , SMR, await final permitting
- Irvine Cluster
 - UCI
 - delivered liquid
- Fountain Valley/I405 connector
 - Orange County Sanitation District/A.P.
 - Waste water DG cleanup/high temp Fuel Cell

Some Tasks that can Challenge a Projects Critical Path

- Original Contracts/Grant/awards process within federal, state and local government can add months to a project timeline
- Lease/Indemnification/language Agreements among all major partners can add months to a projects timeline
- Long equipment lead times on non "off-the-shelf" items including storage tubes, electrolysers reformers, etc. can add tens of months to a timeline
- California relies on *local permitting* jurisdictions who may not have experience in the handling of high pressure hydrogen adds weeks and possibly months to a 3 month timeline
- Codes and Standards for some stationary applications lacking may
- Fueling protocols
 - All OEM vehicle fueling communication/tank systems are not yet identical
 - All fueling station equipment protocols/chillers etc are not identical
 - Therefore stations/OEMs need to be "qualified" on a station-by-station basis
- At this point in the FCV rollout, the relatively low vehicle numbers do not present a compelling business case of the station owner/operator

Challenges to Infrastructure

- Contracts/Grant/awards process within federal, state and local government can add months to a project timeline
- Lease/Indemnification/language Agreements among all major partners can add months to a projects timeline
- Equipment lead times on non "off-the-shelf" items including storage tubes, electrolysers reformers, etc. can add tens of months to a timeline
- Local permitting authorities often have experience in permitting f high pressure hydrogen - can add weeks and possibly months to a 3 month timeline
- Codes and Standards some are still in development
- Fueling protocols
 - Vehicle fueling communication/tank systems are not identical
 - Fueling station equipment protocols/chillers etc are not identical
- No clear Business case pre commercialization vehicle numbers low fuel throughput

Fuel Cell Vehicle Deployment Major Metropolitan Areas

Area	2011	2012	2013
Los Angeles	232	345	489
San Diego	8	8	23
Bay Area	34	48	91
Sacramento	25	38	60

